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Abstract 

High-precision photon diffraction data in beryllium, 
diamond, silicon, copper and germanium are reanalysed 
with the aim of assessing the accuracy of experimental 
X-ray and )/-ray structure factors by comparing derived 
values for cohesive energy with the thermochemical 
ones. Special attention is devoted to the diffraction data 
analysis for a meaningful and accurate comparison 
between theory and experiment. A good overall 
agreement of local density approximation calculations 
is found when the electron density exhibits spherical 
symmetry around each atomic site. On the contrary, the 
analysis of experimental data in 3d transition metals, 
namely vanadium, chromium, iron, cobalt and nickel, 
points out failures of the theory in reproducing the 
asphericity of the electron distribution. 

1. Introduction 
It is now well established that one of the most accurate 
approaches to the calculation of electron properties in 
crystals is the density functional theory (DFT) origin- 
ally developed by Hohenberg & Kohn (1964). However, 
practical application of the DFT to real systems 
(Moruzzi et aL, 1978) is subjected to approximation 
schemes, frequently containing ad hoc assumptions, 
whose validity should be checked. The most popular 
scheme is the so-called local density approximation 
(LDA) (Hohenberg & Kohn, 1964; Kohn & Sham, 
1965) based on the local approximation of the real 
exchange-correlation potential with that of the homo- 
geneous interacting electron gas at the appropriate 
density. Since the ultimate test of the theoretical 
approximations relies on a very close comparison 
between calculated and measured quantities, recogni- 
tion of those quantities that are treated on an equal 
footing from both theory and experiment is essential for 
the comparison to be meaningful and accurate. More- 
over, a fruitful test of the approximations should point 
to possible ways of improving the theory. In principle, 
by means of DFT-LDA, all the ground-state observ- 
ables can be calculated, although some care should be 
taken when observables other than total energy and 
particle density are considered (Bauer, 1983). This 
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specific point is rather crucial since the calculation of 
other observables is not straightforward and in general 
additional assumptions can be necessary (Bauer, 1983). 
Consequently, the most meaningful comparison 
between theory and experiment should be confined to 
only ground-state total energy and directly related 
quantities, e.g. lattice parameter, cohesive energy, 
crystal structure and particle density. 

As to total energy, a reliable check can be carried out 
for light elements only: even though the cohesive 
energy of crystals can be accurately measured, knowl- 
edge of the experimental free-atom total energy is 
necessary to obtain the crystal total energy. Of course, 
theoretical and experimental cohesive energies could be 
directly compared but this requires the calculation of 
the free-atom total energy, which, in turn, introduces 
different and additional approximations in the theory. 
Despite these difficulties, it is apparent that cohesive 
energy and related quantities are reasonably well 
reproduced by the calculations (Moruzzi et aL, 1978): 
the agreement is ~-20% for the cohesive energy in most 
cases and ~1-2% for the lattice parameter and the 
crystal structure is']~air]y well reproduced. The open 
question when testing with this kind of observable is the 
finding of systematic disagreements whose origin is not 
easily traced back to some specific aspect of the theo- 
retical approximations or even to numerical accuracy. 

The other quantity exactly provided by the theory is 
the particle density, which allows the theory--experi- 
ment comparison to be extended over a set of numbers 
instead of just a single one. Specifically, the expansion 
of the electron density in the Fourier lattice series can 
be exploited, the series coefficients being the observ- 
ables measured in charge-density experiments. More- 
over, as the different Fourier components sample 
different regions of the real space, information on the 
dependence of the calculated electron density can be 
obtained from the theory--experiment comparison. 
Indeed, the shape of the electron density is strongly 
related to the characteristics of the system under study 
and some specific failures of the theoretical approach 
can be enhanced (Di Fabrizio et al., 1989). Therefore, a 
systematic investigation of the charge density in crys- 
tals, through high-precision measurements and high- 
accuracy calculations, now appears to be mandatory. 
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It has been observed that the accuracy required to 
get reliable experimental data on the crystal charge 
density must be of the order of 0.1% in most cases, thus 
making the straightforward application of ordinary 
X-ray diffraction techniques of little help (Mazzone, 
1981). Furthermore, in the X-ray region (E < 20 keV), 
the anomalous-scattering contribution causes real 
problems in getting accurate charge-density data, apart 
from the case of light elements (Z < 10). To deal with 
the above problems, the use of F-ray diffraction was 
proposed (Schneider et al., 1981), which makes the 
extinction corrections negligible and almost eliminates 
anomalous-scattering contributions. Limitations of this 
technique are the very small scattering angle attainable 
in the measurements and the increased possibility of 
multiple scattering. Alternatively, very accurate data 
are made available by perfect-crystal diffraction tech- 
niques (Aldred & Hart, 1973; Matsushita & Kohra, 
1974), although anomalous scattering still contributes. 
Application of the latter method in the X-ray region is 
confined to light elements, in practice the only results of 
real utility are those obtained in silicon (Aldred & Hart, 
1973; Teworte & Bonse, 1984) and diamond (Takama et 
al.,  1990) but extension to the y-ray region was proved 
to be possible (Graf & Schneider, 1986). This experi- 
mental approach is, in fact, limited by the production of 
almost perfect crystals and the most extended set of 
available data concerns silicon for which also a very 
accurate measurement of the forward-scattering 
amplitude is reported (Deutsch & Hart, 1988). 

Even though working in the y-ray region has the 
advantage of reducing extinction and anomalous-scat- 
tering effects, experiments carried out at relativistic 
photon energies cannot be interpreted by straightfor- 
ward application of the non-relativistic scattering 
theory (Dewey et al., 1994; Smith, 1987; Sacchetti, 1987; 
Rocchi & Sacchetti, 1993). Extension of the theory to 
relativistic energies is not simple owing to the difficul- 
ties in treating the complex many-body interactions 
among the electrons and the interactions of the elec- 
trons with the external electromagnetic field. Moreover, 
as the photon-electron interaction is governed by the 
not vanishingly small fine-structure constant o~ 
(or "" 1/137), such an interaction must be treated at 
orders higher than the leading one (Rocchi & Sacchetti, 
1993) when the accuracy of the experiment is pushed 
towards 0.1%. 

Finally, the effect of nuclear thermal vibrations 
should be treated carefully. In fact, the nuclear motion 
produces a disturbance of the electron distribution that 
is not accounted for by the simple Debye-Waller factor 
but additional terms are required for a correct treat- 
ment of this effect (Sacchetti, 1984; Petrillo & Sacchetti, 
1994). 

Recently, Zunger and co-workers (Lu et al., 1993, 
1995) have carried out an extended theoretical inves- 
tigation of the electronic charge distribution in C, Si 

and Ge in view of a comparison with high-precision 
experimental data. In this study, some of the corrections 
mentioned above were neglected and it was concluded 
that the experimental electron density of these crystals 
was well reproduced by the LDA calculation. In the 
present paper, the high-accuracy structure-factor data 
for Be (Larsen & Hansen, 1984; Hansen et al., 1984), C 
(Takama et al., 1990), Si (Aldred & Hart, 1973; Teworte 
& Bonse, 1984; Deutsch & Hart, 1985), Cu (Schneider 
et al., 1981) and Ge (Matsushita & Kohra, 1974; Dewey 
et al., 1994; Deutsch et al.,  1990), as obtained by photon 
diffraction experiments, are reanalysed taking into 
account all the possible systematic contributions. 
Moreover, the corrected sets of data are used as input 
to deduce the cohesive energy of the crystal to be 
compared with the thermochemical values. The esti- 
mate of the cohesive energy from structure-factor data 
is a useful test of the overall reliability of the data 
themselves. One can anticipate that, were wrong values 
of cohesive energy obtained by this procedure, the set 
of structure factors is either incomplete or affected by 
some systematic error, although correct values of 
cohesive energy do not ensure the reliability of the data 
set. Comparison of the structure factors with very 
accurate first-principle calculations available from the 
literature is also presented and discussed. Finally, an 
analysis of the reduced sets of data of medium accuracy 
collected for transition metals (Weiss & De Marco, 
1965; De Marco & Weiss, 1965; Diana & Mazzone, 1972, 
1974, 1975, 1978; Ohba et al., 1981, 1982; Ohba & Saito, 
1982; Kretschmer & Schneider, 1984; Rocchi & 
Sacchetti, 1995) is briefly discussed. 

2. Analysis of experimental data 

The high-precision charge-density data available in the 
literature on elemental systems were analysed with the 
same procedure in order to obtain a common protocol 
for reliable internal comparison. Measurements 
providing a nominal uncertainty on the scattering 
amplitude per atom of the order of or better than 0.1r0, 
r o = e 2 / m c  2 being the classical electron radius, were 
accepted as accurate enough. Such a requirement 
implies a relative accuracy increasing as the atomic 
number increases. To our best knowledge, extended 
experimental data sets on pure elements fulfilling the 
above accuracy requirement are those on Be (Larsen & 
Hansen, 1984; Hansen et al., 1984), C (Takama et al., 
1990), Si (Aldred & Hart, 1973; Teworte & Bonse, 1984; 
Deutsch & Hart, 1985), Cu (Schneider et al., 1981) and 
Ge (Matsushita & Kohra, 1974; Dewey et al., 1994; 
Deutsch et al., 1990). This selection may appear arbi- 
trary to some extent; however, it was brought about by 
the need to have a c c u r a t e  and, at the same time, 



470 RELEVANCE OF CHARGE-DENSITY MEASUREMENTS 

extended structure-factor data sets that were as intern- 
ally consistent as possible. Some of the experiments 
were performed using low-energy photons (Aldred & 
Hart, 1973; Matsushita & Kohra, 1974; Teworte & 
Bonse, 1984; Takama et al., 1990; Larsen & Hansen, 
1984) and part of these data was affected to some 
extent by anomalous scattering. The other cited 
measurements (Schneider et al., 1981" Dewey et al., 
1994; Hansen et al., 1984) were carried out at relativistic 
energies where the amount of anomalous scattering is 
expected to be negligible but some departure from the 
Thomson scattering could be observed. In all the 
measurements, apart from Ge (Matsushita & Kohra, 
1974), photons with energy much greater than the 
electron binding energy were employed. 

When the incoming photon energy is relatively high 
in comparison with the electron binding energy, the 
electron-photon scattering can be treated in the 
framework of the relativistic theory under the plane- 
wave approximation for the intermediate states and, at 
least at small momentum transfer, a simple correction 
to the Thomson cross section (Sacchetti, 1987) can be 
derived. As discussed by Smith (1987) and Sacchetti 
(1987), the measured structure factor can be written as 

5~'G = Y~[fm(G, s) + ft'~E -k- frad(G, S) + fN(S)] exp(iG • rs) 
s 

(1) 

where G is a reciprocal-lattice vector and r~ is the 
position of the sth atom in the unit cell. f,,,(G, s) is the 
modified scattering factor, which, as discussed by 
Sacchetti (1987), is given by: 

fm (G , s )  = f dr[exp(iG, r)p(r)]/[1 - V(r) + E0], 
g2WS(s) 

(2) 

where p(r) is the electron number density, V(r) and E 0 
are the one-electron potential and the ground-state 
energy in units of the electron rest energy mc 2. The  
integral in (2) is over the volume of the Wigner-Seitz 
cell f2WS(s ) centred around the sth atom. f~LE is the 
anomalous-scattering contribution as deduced from the 
dispersion-relation approach (Gell-Mann et al., 1954) 
and assumed to be independent of the site. frad(G, S) is 
the contribution due to the so-called radiative correc- 
tions (Sacchetti, 1987; Rocchi & Sacchetti, 1993; Jauch 
& Rohrlich, 1980), which turns out to be proportional 
to fro(G, s) (Rocchi & Sacchetti, 1993). Actually, addi- 
tional contributions are expected when the photon 
energy increases, namely Delbruck scattering and 
nuclear giant resonance, however, they are almost 
completely negligible in the energy range of the 
experiments performed to date (Sacchetti, 1987; Jauch 
& Rohrlich, 1980). Finally, fN(s) accounts for nuclear 
Thomson scattering from a charge Ze and mass M, that 
is fN(s) = (Ze)2 / M c  2. The  modified scattering factor can 

be written in the more suitable form: 

fm(G, s )=  f drp(r)exp(iG-r)  
f2WS(s) 

+ f drp(r){[V(r)- E0]/[1 - V(r)+ E0]} 
f2WS(s) 

× exp(iG, r) 

= f0(G, s) + A(G, s), (3) 

which points out how fro(G, s) is obtainable from the 
ordinary scattering factor f0(G,s) by adding the 
correction term A(G,s). Such a term, which is very 
small, can be safely calculated employing a suitable 
approximation for p(r) and V(r). It is important to 
remark that in solid-state physics the key quantity is the 
ordinary scattering factor f0(G, s), so it is this part of the 
total scattering amplitude that must be deduced from 
the experimental data. It is also worthwhile to note that 
the correction A(G, s) at G - - 0  is equal to the high- 
energy correction discussed by Smith (1987) with 
reference to the forward-scattering amplitude. Such a 
correction is purely kinematic in its origin and can be 
interpreted as a relativistic change of the electron mass. 

The effect of the nuclear thermal motion on the 
scattering amplitude is quite complex and it reduces to 
the ordinary multiplicative Debye-Waller factor only 
when the charge densities of different atoms are 
assumed to be tightly bound to the corresponding 
nuclei (Sacchetti, 1984). Such an approximation is 
generally acceptable but it has to be checked when 
accurate results are desirable. In general, the effect of 
the thermal motion can be accounted for by assuming 
that the electron-density fluctuations are linear in the 
nuclear displacements (Sacchetti, 1984). The effective 
structure factor .~G ff resulting from this assumption is 
given by 

-T~'ffG = ~G exp[--W(G)] + ~ ~(G,  G') exp[-W(G')],  
G' 

(4) 

where ~ (G,  G') is the appropriate response function 
describing the electron-density fluctuations induced by 
the nuclear displacement field. The Debye-Waller 
factor exp[-W(G)] is given by: 

exp[-W(G)] = (exp(iG. u)), (5) 

where u is the displacement operator of a nucleus and 
the average is taken over the phonon ensemble. W(G) 
depends on the nuclear coordinates only and it can be 
obtained by neutron diffraction measurements. 
However, as equation (4) shows, the knowledge of the 
Debye-Waller factor is not sufficient to derive the 
structure factor .T" G. It is quite difficult to get a reliable 
theoretical model of the response function 7~(G, G'), 
which is related to the dielectric matrix of the system 
(Sacchetti, 1984). Only in the case of simple metals can 
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a reasonable estimate of ~(G,  G') be obtained rather 
straightforwardly without resorting to complex solid- 
state calculations (Sacchetti, 1984). As to structure- 
factor measurements, need of going beyond the Debye- 
Waller factor occurred in a neutron diffraction experi- 
ment in the intermetallic FeCo compound and only at 
temperatures rather high compared with the Debye 
temperature (Petrillo & Sacchetti, 1994). In this parti- 
cular case, the observed change of the magnetic struc- 
ture factor of the 110 reflection was about 0.18r0 at 
1000 K and reduced down to 0.06r0 at room tempera- 
ture against a hypothetical static lattice. Since this effect 
is expected to be generally small at temperatures that 
are not too high, the problem of thermal motion 
beyond the Debye-Waller correction is neglected in the 
present analysis of experimental data. Moreover, 
whenever an accurate measurement of the Debye- 
Waller factor by neutron diffraction was available, it 
was used to analyse the experimental data, as the most 
meaningful estimate of this term is that provided by a 
neutron measurement. When the Debye-Waller-factor 
data were not available or not accurate enough, we 
preferred to deduce it from the experimental phonon- 
dispersion relations or density of states, measured by 
neutron scattering, under the quasi-harmonic approx- 
imation (Maradudin, 1974). 

In general, there is not an a priori  criterion to judge 
the real accuracy of a given set of experimental struc- 
ture factors. Moreover, when the accuracy demand is so 
high, the effect of possible systematic errors, other than 
those discussed, in nominally high-precision data 
becomes extremely critical. A check of the validity of a 
given data set, which was suggested by Mazzone & 
Sacchetti (1984), is to calculate the cohesive energy 
from the diffraction data and to compare it with that 
deduced from thermochemical measurements. To carry 
out this calculation using the available diffraction data, 
we adopted the procedure described in the following. 
The total energy of an elemental many-electron system 
is given by (Mazzone & Sacchetti, 1984): 

E0 = EeN + Eerie + EX~ + E M, (6) 

where Eeu, EUee, EX~e and E M are, respectively, the elec- 
tron-nucleus interaction energy, the electron-electron 
Hartree energy, the electron-electron exchange-corre- 
lation energy and the Madelung energy. In particular, 

Eeu = --Ncrr(ZeZ/f2o)~_,'[Fc(F~) * + c.c.]/G 2 (7) 
G 

E g = N czr( eZ l ~o ) ~.,' l Fc, l Z / G 2 (8) 
G 

EX~e - (NeZ/8zr 2) f dq [S(q) - Z]/q 2 (9) 

EM = _ 1U(Ze)Z(ot/2Ro),  (10) 

where N is the number of atoms, Nc the number of unit 
cells, ~o the unit-cell volume, Z the atomic number, 

a the Madelung constant and R0 given by 
~ o N ¢ / N  = 4rrR3o/3. F G = Y ~ s f o ( G , s ) e x p ( i G  .rs) is the 
ordinary structure factor, F~ = )--~sexp(iG. rs) is the 
geometrical structure factor and S(q) is the incoherent 
scattering factor. In equations (7) and (8), Y~; means 
that the (000) reciprocal-lattice vector is omitted from 
the sum. The cohesive energy can be deduced by 
subtracting the energy of one atom in the crystal, i.e. 
Eo /N ,  to the free-atom energy which is given by 

oo 
E at --- (e  2 / 2 r r )  f d q  { s a t ( q )  -~- [ f ~ t ( q ) ] 2  _ Z }  

0 
t3o 

- (Ze2/rr) f dqf~t(q). (11) 
o 

Therefore, apart from the exchange-correlation term, 
which depends on the incoherent scattering factor S(q), 
appropriate to the atom or the crystal, the cohesive 
energy is directly obtainable from the structure factors 
F G measured in real diffraction experiments. Since only 
a reduced set of structure factors is available from the 
diffraction experiment and the sums over G in equa- 
tions (7) and (8) are slowly converging, E0 can be 
calculated by assuming that the scattering factor of the 
crystal approaches that of the atom for high G vectors. 
This assumption is well founded since in a typical 
experiment appreciable differences between the two 
scattering factors are observed for just the first four-five 
reflections. Moreover, through a simple manipulation of 
equations (7)-(11) and according to the discussion 
reported in Mazzone & Sacchetti (1984), it can be 
shown that the crystal scattering factor must  approach 
the free-atom scattering factor when G increases 
otherwise the cohesive energy diverges. As many reci- 
procal-lattice vectors as necessary to obtain a conver- 
gence of the energy sums better than 0.01 eVatom -1 
were included. The atomic scattering factors in the high 
sin(0)/~, region were interpolated from the extended 
tabulation of Hubbell & Overb¢ (1979) by means of a 
power law. 

In the following, the experimental structure factors 
are analysed according to the described procedure and 
the cohesive energy check is applied to all the corrected 
sets of data. Throughout the following sections, a 
simplified notation for the scattering factors is adopted, 
namely the G and s dependences are not explicitly 
written out. 

2.1. Beryl l ium 

The experiment reported by Hansen et al. (1984) was 
performed at 412 keV incoming photon energy and this, 
according to the estimate of Rocchi & Sacchetti (1993), 
makes the frad and f~E contributions safely negligible. 
The kinematic correction A was calculated using charge 
density and one-electron potential data from Moruzzi et 
al. (1978) and it was found to be less than 0.0014r0 for 
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all the reflections. The contribution of the nuclear 
Thomson term fN amounted to less than 0.001r0 and it 
was neglected. Therefore in a light element like Be, the 
experimental scattering factor turned out to be coin- 
cident with f0 times the Debye-Waller  factor within less 
than 0.003r0, which is a figure smaller than the experi- 
mental errors. Hence, the experimental scattering 
amplitudes, as reported by Hansen et al. (1984), were 
corrected for just the Debye-Waller  factor. An accurate 
neutron measurement of this term is reported by 
Larsen et al. (1980), further discussed by Larsen & 
Hansen (1984), and it was used to correct the data. 

A second set of data in Be is that reported by Larsen 
& Hansen (1984) where the measurements were carried 
out by a more conventional X-ray diffraction technique. 
Again, direct use of these data for the present analysis 
can be performed since no anomalous correction is 
needed in the case of this very light element even at this 
lower photon energy (Mo Kc~ and Ag Kot). However, 
the original data were not put on an absolute scale but 
they were properly normalized (Larsen & Hansen, 
1984) by comparison with both the data of Hansen et al. 
(1984) and the free-atom scattering factor (International  
Tables fo r  X-ray  Crystallography,  1989). In Fig. 1, a 
comparison is shown between the data as provided by 
Larsen & Hansen (1984) and the atomic scattering 
factor over the sin(0)/~, region from 0.8 to 1.21 ,~-1. It 
is apparent that the experimental data are system- 
atically lower than the free-atom curve, that is conver- 
gence between the crystal and the free-atom scattering 
factors is not achieved over this high sin(0)/~ region. 
This trend has already been observed and discussed by 
Larsen & Hansen (1984). The explanation proposed by 
the authors invoked the core expansion of the crystal 
charge density against that of the free atom. However, 
this interpretation, which implies maintaining the 
difference with the same sign for higher values of 
sin(0)/~., may lead to wrong values of the cohesive 
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O.2 

0 .0  . . . .  , . . . .  , . . . .  , . . . .  , , , 

0.8  0 .9  1.0 1.1 1.2 

sin(0)/A (,~-l) 

Fig. 1. Beryllium. Comparison between the scattering factors (circles) 
measured by Larsen & Hansen (1984) and the free-atom curve 
over the high sin(O)/~, region. 

energy and should be carefully considered. This point 
was discussed in Mazzone & Sacchetti (1984) where the 
effect of a possible difference between the two scat- 
tering factors in the region of high sin(0)/~, was shown 
to result in the crystal energy series not converging. 
Therefore, the estimate of the cohesive energy obtain- 
able from the experimental data of Larsen & Hansen 
(1984) was a relevant test of the scattering-factor data 
themselves. Following the procedure described in the 
previous section, the sums over G [equations (7) and 
(8)] were calculated using the available experimental 
data and convergence of the series was provided by 
addition of the calculated free-atom data to the 
experimental set. The same set of atomic data, namely 
the free-atom scattering factor up to sin(0)/,k = 70 A -1, 
was used to calculate E ~t in equation (11). The 
Coulomb contribution to the cohesive energy EcCoh, 
defined as the sum of the electron-electron Hartree 
term and the electron-nucleus interaction term, was 
found to be -0 .92 (37 )eVa tom -1. In Table 1, the 
thermochemical value of the cohesive energy and the 
exchange-correlation contribution to it, E~ h, are 
quoted. The latter term was calculated through equa- 
tion (9) using the incoherent scattering factor measured 
by Mazzone et al. (1983). From the reported values, EcCh 
is expected to be 0.5 (3). Moreover, repeating the 
calculation for a smaller set of experimental data, quite 
different values of ECoh were found. This incorrect 
finding is well represented in Fig. 2 where the Coulomb 
cohesive energy is plotted versus the maximum value of 
sin(0)/Z corresponding to the last reflection included in 
the series, the atomic data set being fixed. A non- 
converging trend is apparent from Fig. 2, which invali- 
dates every possible estimate of the cohesive energy 

0 

> 
o 

- I 0  

0.0 013 0'.6 ' 019 ' ' 1'.2 

sin(0)/A (/~-1) 

Fig. 2. Convergence of the energy series in beryllium: Coulomb 
contribution to the cohesive energy, ECoh, versus sin(0)/~, 
corresponding to the maximum term included into the series. Full 
line: data from Larsen & Hansen (1984). Dashed line: data from 
Larsen & Hansen (1984) normalized to the free atom. Short-dashed 
line: expected sum value. 
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RX Table  1. Cohesive energy data f rom X-ray measurements, E,,~, compared with the experimental thermochemical 
values E,,7,] c 

The X-ray term Ecno~ is given by the sum of Ec,,h, arising from structure-factor measurements, and E~o h, obtained from incoherent scattering- 
factor measurements (see text). The Coulomb contribution to the total energy of the atom, E~ c [see equation (11)], is also quoted. The number of 
independent reflections used to calculate the cohesive energy is listed in the last column. 

(a) Structure-factor data for Be from Hansen et al. (1984). (b) Structure-factor data for Be from Larsen & Hansen (1984). (c) Structure-factor 
data for Be from Larsen & Hansen (1984), normalized to the free atom. 

-c E~h -kx Ec,oh Ecoh 
(eVatom -~) (eVatom -1) (eVatom -1) 

Be ~'~ -4.15 (50) -3.8 (2) -8.0 (5) 
Bc ~h) -0.92 (37) -3.8 (2) -4.7 (4) 
Be ~'~ -8.41 (37) -3.8 (2) -12.2 (4) 
C -1.6 (2) -4.4 (2) -6.0 (3) 
Si -1.4 (3) -3.9 (2) -5.3 (3) 
Cu 12.5 (47) - - 
Ge 0.5 (62) - - 

-1"(" -( 
--Leo h Eat 

(eV atom -I ) (eV atom -I ) N~f 

-3.34 362.4 14513138 
-7.06 951.3 1008247 
-4.66 7601 .2  28087859 
-3.5l 44445.3 66218089 
-3.38 56947.9 253465234 

Tab le  2. Beryllium: scattering factors per atom o f  the first 15 reflections 

(a) Experimental data from Larsen & Hansen (1984). (b) Experimental data from Larsen & Hansen (1984), normalized to the free atom. (c) 
Theoretical data from Chou et aL (1983). (d) Theoretical data from Dovesi et aL (1982). (e) Free-atom data from International Tables for X-ray 
Crystallography (1989). Average ratios and fluctuations of the experimental data over the theoretical ones are reported. 

hkl sin(0)/), ~xp ~xp ~h ~h f~t 
(A -I) (a) (b) (c) (d) (e) 

100 0.2526 1.895 1.936 1.885 1.949 1.818 
002 0.2791 1.731 1.768 1.721 1.755 1.742 
101 0.2886 1.689 1.725 1.689 1.677 1.718 
102 0.3764 1.570 1.604 1.536 1.526 1.559 
110 0.4375 1.460 1.491 1.434 1.437 1.462 
103 0.4889 1.379 1.409 1.349 1.363 1.379 
200 0.5052 1.341 1.370 1.317 1.330 1.352 
112 0.5189 1.321 1.349 1.302 1.314 1.329 
201 0.5241 1.318 1.346 1.296 1.308 1.320 
004 0.5582 1.265 1.292 1.240 1.253 1.264 
202 0.5772 1.218 1.244 1.207 1.219 1.232 
104 0.6127 1.172 1.197 1.149 1.160 1.173 
203 0.6561 1.088 1.111 1.075 1.087 1.101 
210 0.6683 1.065 1.088 1.053 1.066 1.081 
211 0.6827 1.042 1.064 1.029 1.043 1.058 

t0.01 t0.01 
R± a R± a 

(a)/(c) 1.014-t-0.007 
( b )/( c ) 1.036-t-0.007 
( a)/( d) 1.004-t-0.012 
( b )/( d) 1.026-t-0.013 

f r o m  the  m e a s u r e d  da ta .  Th is  f ind ing  c o u l d  be  d u e  to  
e i t h e r  a s ca l e - f ac to r  e r r o r  in t he  o r ig ina l  d a t a  o r  to  a 
ve ry  s low c o n v e r g e n c e  o f  the  crysta l  s c a t t e r i n g  f ac to r  
t o w a r d s  t ha t  o f  t he  f r ee  a t o m .  T h e  l a t t e r  case  w o u l d  
s u p p o r t  t he  h y p o t h e s i s  o f  t he  co re  e x p a n s i o n  in Be  
( L a r s e n  & H a n s e n ,  1984). E x p e c t e d  va lues  o f  ECoh 

m i g h t  be  r e c o v e r e d  by a s low c o n v e r g e n c e  t r e n d  o f  
t he  e x p e r i m e n t a l  d a t a  t o w a r d s  t he  f r e e - a t o m  curve ,  

t a k i n g  p lace ,  h o w e v e r ,  in t he  u n e x p l o r e d  r e g i o n  o f  
s in(0) /X > 1.21 ~ - 1 .  O f  course ,  t he  poss ib i l i ty  t h a t  t he  
f r e e - a t o m  s c a t t e r i n g  fac to r s  w e r e  i n c o r r e c t  c a n n o t  be  
e x c l u d e d  a priori. The  r e f e r e n c e  s c a t t e r i n g  f ac to r  u s e d  
in Be  a n d  s h o w n  in Fig. 1 is t ha t  o b t a i n e d  by t he  rela-  
t ivist ic  H a r t r e e - F o c k  a p p r o a c h  ( R H F )  (International 
Tables for  X-ray Crystallography, 1989), wh ich  is k n o w n  

to be  a well  f o u n d e d  ca lcu la t ion .  O n e  can  q u e s t i o n  t ha t  
t he  R H F  ca l cu l a t i on  misses  c o m p l e t e l y  any  c o r r e l a t i o n  

effects.  H o w e v e r ,  it is k n o w n  ( B r o w n ,  1970; B e n e s c h  & 
Smi th ,  1970) t ha t  t he  use  o f  a c c u r a t e  m a n y - b o d y  
w a v e f u n c t i o n s  d o e s  n o t  a p p r e c i a b l y  c h a n g e  t he  f ree-  
a t o m  s c a t t e r i n g  f ac to r  o f  l ight  e l e m e n t s .  

W e r e  t he  o b s e r v e d  ef fec t  d u e  to  a sca le - fac to r  e r ro r ,  
it c o u l d  be  c h e c k e d  by i n t r o d u c i n g  a scale  f ac to r  

p r o p e r l y  c h o s e n  to  p r o d u c e  m a t c h i n g  o f  t he  two  scat-  
t e r ing  fac to rs  o v e r  a r a t h e r  e x t e n d e d  r e g i o n  at h igh  
s in(0) /X.  T h e r e f o r e ,  sca l ing  o v e r  t he  last m e a s u r e d  20 
re f l ec t ions  was  ca r r i ed  out .  T h e  r e su l t i ng  s ca t t e r i ng  

f ac to r s  o f  jus t  t he  first 15 re f l ec t ions  are  l i s ted  in Tab le  2 
t o g e t h e r  wi th  t he  o r ig ina l  d a t a  f r o m  L a r s e n  & H a n s e n  
(1984).  T h e  C o u l o m b  c o h e s i v e  e n e r g y  c a l c u l a t e d  us ing  
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Table 3. Diamond:  best estimate o f  the experimental scattering factors per atom, fbe 
Theoretical data are from Lu et al. (1993) and the RHF calculation of the free-atom scattering factor is from International Tables for X-ray 
Crystallography (1989). The average ratio and fluctuation of the experimental data over the theoretical ones is also reported. 

hkl sin(0)/~. (A-') f0 ~ ~0 h f~t 

111 0.2428 3.276 (11) 3.282 3.028 
220 0.3965 1.966 (5) 1.976 1.961 
311 0.4649 1.703 (4) 1.700 1.758 
222 0.4856 0.148 (10) 0.111 - 
400 0.5607 1.564 (6) 1.564 1.589 
331 0.6110 1.570 (7) 1.558 1.524 
422 0.6867 1.464 (10) 1.434 1.439 
511 0.7284 1.420 (2) 1.384 1.395 
333 0.7284 1.395 (6) 1.364 1.395 
440 0.7929 1.318 (3) 1.316 1.328 

R-t-cr 
1.008+0.011 

the scaled scattering factors turned out to be 
-8 .41 e V a t o m  -1, which is definitely too negative a 
value. In Fig. 2, the curve of the Coulomb cohesive 
energy obta ined using the scaled scattering factors is 
also shown. The convergence of the series, which is 
recovered in this case, coupled to the wrong value 
found for ECoh, can be kept  as evidence that correction 
o f  the experimental scattering factors by just a scale 
factor is not adequate. Finally, the accurate scattering- 
factor calculations in crystalline Be, reported by Chou 
et al. (1983) and Dovesi et al. (1982) and based 
respectively on LDA and Har t ree -Fock  approximation,  
are quoted in Table 2. A quanti tat ive estimate of the 
overall  agreement  between experimental  and theore-  
tical data is given by the average ratios and corre- 
sponding r.m.s, fluctuations. These quantities, also 
reported in Table 2, point out that  nei ther  the LDA nor 
the Har t ree -Fock  calculations reproduce the experi- 
mental  data. 

The conclusion we can draw is that  there is not  a 
straightforward way to reconcile measured and theo- 
retical scattering factors and expected values of the 
cohesive energy without  introducing arbitrary distor- 
tions of the data since a correction for simply a scale 
factor is not  sufficient. Therefore,  two alternatives are 
left: ei ther  the set of experimental  data is affected by 
some systematic error  or the measurements  have to be 
extended to higher values of sin(0)/~, since the 
convergence of the crystal scattering factor to that  of 
the free atom is very slow (see Fig. 1). To get some hint 
about  the latter possibility, the original experimental  
data were extrapolated to sin(0)/Jk "~ 2 A  -1, main- 
taining the same difference between crystal and free- 
a tom scattering factors and the free-atom scattering 
factor was used for sin(0)/Jk > 2 A  -1. The cohesive 
energy calculated using this set of data as input was 
found to be in close agreement  with the thermo- 
chemical value. This finding, al though resulting from a 
simulation of the scattering factor outside the measured 
range [sin(0)/X < 1.2 A-l], suggests that addit ional  data 
should be measured in Be. This would help in under- 

standing whether  the difference observed in Fig. 1 is a 
real core expansion as this effect could play an impor- 
tant  role in defining constraints for the theory. 

2.2. Diamond  

The high-accuracy investigation in d iamond reported 
by Takama et al. (1990) was carried out using white 
radiat ion in the energy range from 12 to 40 keV and a 
recent review of these data can be found in Spackman 
(1991). In the present  analysis, the anomalous-scat-  
tering contr ibut ion and the kinematic  correction A 
were neglected, being much smaller than the experi- 
mental  errors. The frad term did not contr ibute  because 
of the low energy of the measurement .  As in the case of 
Be, the nuclear Thomson term fN, amount ing to 
"-'0.001r0, was neglected. Contrary  to Takama et al. 
(1990), the Debye-Wal le r  factor was deduced from the 
experimental  phonon-dispers ion relations (Warren et 
al., 1967; Patel et al., 1984). It turned out to be: 

exp [ -W(G) ]  = exp{-0.152[s in(0) /~f}  (12) 

with sin(0)/~, in ,~-1. The so-corrected data are 
reported in Table 3, where the LDA values from Lu et 
al. (1993) are also presented. The 222 forbidden 
reflection, as quoted by Spackman (1991), is also 
reported in Table 3. The agreement  between calculated 
and experimental  values is quite satisfactory, as is also 
apparent  from the value of the average ratio. The 
cohesive energy terms, calculated by means of the 
corrected set of diffraction data and making use of the 
incoherent  scattering factor measured by Petrillo & 
Sacchetti (1995), are reported in Table 1. Convergence 
was achieved including the free-atom scattering factor 
data up to sin(0)/)~ = 5 0 A  -1. The cohesive energy 
obta ined from the diffraction data compares well with 
the value obta ined from thermochemical  measure- 
ments. The contr ibut ion of the 222 reflection to the 
cohesive energy amounts  to 2 meV atom -1 as compared 
with the total Coulomb contr ibut ion of - 1 . 6  eV atom -1. 
Contrary  to the case of Be, the convergence of the 
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Table 4. Silicon." best estimate o f  the experimental scattering factors per atom, ]:be 
Theoretical results are also reported: (a) data from Lu et al. (1993); (b) data from Wang & Klein (1981). Free-atom values are from the R H F  
calculation in International Tables for  X-ray Crystallography (1989). In the last column, values of the kinematic correction A are listed. Average 
ratios and fluctuations of the experimental  data over  the theoretical ones are reported for the whole sin(0)/Jk region; in the case of the free atom, 
these quantities are calculated for sin(0)/), >_ 0.52 ~-1 .  

hkl sin(0)/~. 0f~ ~h ~h ~h A 
(X -1) (a) (b) 

111 0.1595 10.737 10.726 10.68 10.549 --0.013 
220 0.2604 8.667 8.665 8.63 8.752 --0.015 
311 0.3053 8.030 8.033 8.04 8.173 --0.015 
222 0.3189 0.191 0.168 0.13 - - 
400 0.3683 7.454 7.452 7.46 7.521 --0.015 
331 0.4013 7.256 7.225 7.19 7.189 --0.016 
422 0.4510 6.725 6.696 6.69 6.707 -0 .016 
333 0.4784 6.436 6.404 6.41 6.445 -0 .016 
511 0.4784 6.449 6.428 6.42 6.445 --0.016 
440 0.5208 6.056 6.030 6.02 6.041 --0.016 
444 0.6378 4.993 4.968 4.981 --0.016 
551 0.6575 4.815 4.802 4.815 --0.016 
642 0.6889 4.560 4.546 4.559 --0.016 
800 0.7365 4.183 4.182 4.193 --0.016 
660 0.7812 3.883 3.870 3.876 --0.017 
555 0.7973 3.770 3.761 3.768 --0.017 
844 0.9020 3.151 3.155 3.151 --0.017 
880 1.0416 2.548 2.551 2.541 -0.017 

R:l=a R=l=a R-t-a 
1.0022±0.0021 1.0040+0.0031 1.O009=t=O.OO16 

energy sums was found to be satisfactory even with this 
reduced experimental set of data. The contribution to 
the cohesive energy brought about by the structure 
factors is rather small, as expected in light elements 
where cohesion is dominated by the exchange-correla- 
tion contribution. 

2.3. Silicon 

The data analysed in the following are those from the 
high-precision measurements of Aldred & Hart (1973), 
Teworte & Bonse (1984) and Deutsch & Hart (1985). 
All the data were corrected for the nuclear Thomson 
contribution, fu = 0.004ro, the kinematic term A and 
the Debye-Waller  factor. The kinematic correction A 
was calculated employing the free-atom electron 
density as tabulated by Herman & Skillman (1963). 
Since the A values thus obtained range from -0.013ro 
to -0.017ro (see Table 4), use of the electron density of 
the free atom instead of the crystal did not introduce a 
large error. As, to our best knowledge, a not accurate 
enough measurement of the Debye-Waller  factor from 
neutron diffraction is available, it was deduced from the 
experimental phonon density of states (Weber, 1977). 
At room temperature (293 K), 

exp[-W(G)]  = exp(-0.460[sin(0)/X12}, (13) 

where sin(0)/~, is in ~-1.  The data of Aldred & Hart 
(1973) and Teworte & Bonse (1984) were collected 
using Mo KOtl and Ag K0t I radiations, so that a non- 
negligible contribution from anomalous scattering 
affected the experimental structure factors. The anom- 

alous scattering contribution f~E, assumed to be wave- 
vector independent, was deduced from the 
experimental forward-scattering amplitude, reported by 
Deutsch & Hart (1988), properly corrected by A at 
G = O, i.e. A = -0.010ro. Indeed, neglecting frad and at 
G -- 0, the experimental structure factor is given by 

.T" o = 2[f,,,(0) + f'Le(O) + fN] 

= 2[Z + A(0) +/;~F~(0) + fN], (14) 

from which f~E(0) can be obtained. 
The corrected values of f0, separately produced from 

the experimental data of Aldred & Hart (1973), 
Teworte & Bonse (1984) and Deutsch & Hart (1985), 
were also averaged because of the very small difference 
found between the various sets, the average fluctuation 
of f0 being of the order of 0.005r0. The best estimate 
data for f0 are reported in Table 4 together with the 
theoretical data from Lu et al. (1993) and Wang & Klein 
(1981). A good agreement is found between the 
calculated values and the best estimate of the experi- 
mental data. The calculated average ratios and fluc- 
tuations (see Table 4) indicate a better agreement for 
the LDA calculation of Lu et al. (1993). In any case, the 
discrepancies observed between calculated and 
measured values are of the same order as the probable 
experimental errors. Finally, the cohesive energy, 
deduced from the present scattering factors employing 
the free-atom data up to sin(0)/~. = 100,~ -1 and the 
measured data of the incoherent scattering factor 
(Paakkari & Suortti, 1974), is reported in Table 1. The 
good agreement with the thermochemical value indi- 
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Table 5. Silicon: experimental scattering factors per atom 

Free-atom values are from the RHF calculation of International 
Tables for X-ray Crystallography (1989). In the last column, values of 
the kinematic correction A are listed. 

hkl sin(O)/k ( ,~- ' )  ~xp ~ t  A 

777 1.1162 2.273 (3) 2.302 -0.016 
888 1.2757 1.834 (3) 1.922 -0.016 
10,10,0 1.3020 1.730 (2) 1.869 -0.016 
999 1.4351 1.529 (8) 1.675 --0.015 
12,12,0 1.5624 1.356 (3) 1.540 -0.015 

cates that the present data are very accurate. Moreover, 
the overall agreement between theory and experiment 
suggests that LDA is a fairly accurate theory for this 
system. 

For completeness, the 222 forbidden reflection, as 
measured by Alkire et al. (1982) and without any 
applied correction, is reported in Table 4. Actually, the 
structure factors of forbidden reflections are quite 
sensitive to either the detailed shape of the electron 
density around each atom or the asymmetry effects of 
the Debye-Waller  factor. In the case of Si, a large body 
of data on forbidden reflections is available. However, a 
proper analysis of these reflections would be quite 
complex and beyond the present purpose. The 
measured value of the 222 scattering factor was used to 
calculate the cohesive energy and its contribution 
turned out to be 21 meV atom -1 only, as compared with 
the total contribution of -1 .4  eVatom -1. 

Actually, some more reflections, namely 777, 888, 
10,10,0, 999 and 12,12,0, were measured in Si (Deutsch 
& Hart, 1985). These experimental data were treated in 
the same way as those reported in Table 4 but they are 
separately listed in Table 5 because of their rather 
puzzling behaviour. An inspection of Table 5 shows that 
the difference between these data and the free-atom 
scattering factor increases rapidly with increasing 
sin(0)/k. In Deutsch & Hart (1985), this finding was 
used as experimental evidence of the difference 
between the Debye-Waller  factor appropriate to core 
or valence electrons. By fitting the whole of the 
experimental data over two separate regions of 
sin(O)/k, the authors deduced two different values of 
the Debye-Waller  coefficient, i.e. 

exp[-W(G)]  -- exp{-0.4632 4- O.O041[sin(O)/k] 2 } 

0.5 < sin(O)/k < 1.05 ,~,-1 (15) 

exp[-W(G)]  -- exp{-0.5085 + O.O035[sin(O)/k] 2 } 

1.3 < sin(O)/k < 1.57,~-1. (16) 

Since, as already observed in Deutsch & Hart (1985), 
core electrons are more tightly bound to the nucleus, 
the Debye-Waller  factor appropriate to them should 
be substantially equal to that measured by neutron 
diffraction. Actually, even though not accurate enough 
for the previous data analysis, neutron determinations 

of the Debye-Waller  factor in Si do exist. The neutron 
result reported by Zhang et al. (1990), namely, 

exp[-W(G)]  = exp{-O.45[sin(O)/k]2}, (17) 

where the probable error on the coefficient 0.45 is in the 
range 0.01-0.02, rules out the possibility that the 
interpretation of Deutsch & Hart (1985) was correct. At 
present, a reliable interpretation of the behaviour 
exhibited by the data of Table 5 is lacking. 

A final remark concerns the free-atom scattering 
factors, also reported in Table 4. It is apparent that the 
RHF calculation (International Tables for X-ray Crys- 
tallography, 1989) is, in the case of Si, extremely accu- 
rate providing a convergence to the crystal scattering 
factor better than 0.1% in the high sin(O)/k region. 

2.4. Copper 

The set of data selected as the best available for the 
present analysis are those from Schneider et al. (1981). 
Since high-energy photons were used for the measure- 
ments, the advantage of neglecting the f~.f~ contribution 
could be exploited. The frad contribution was found to 
be "~0.001f0 (Rocchi & Sacchetti, 1993), i.e. smaller than 
the experimental errors and the nuclear Thomson 
contribution, fu = 0.008r0, was neglected as well. 
Furthermore, the experiment was performed at two 
different temperatures, thus allowing for a reasonable 
check of the Debye-Waller  factor. In the case of 
copper, a quite reliable experimental phonon density of 
states (Svensson et al., 1967) is available that yields a 
specific heat Debye temperature in close agreement 
with that derived from calorimetric experiments. Use of 
the measured density of states, under the quasi- 
harmonic approximation (Maradudin, 1974), yielded 

exp[-W(G)]  -- exp{-O.163[sin(O)/k] 2} (18) 

at 50 K. This result compares favourably with the esti- 
mate deduced by Schneider et al. (1981) by means of a 
direct comparison of the experimental scattering factors 
with those of the free atom. At room temperature, the 
factor in the exponent of equation (18) takes the value 
0.532 ,~2 still in close agreement with the estimate of 
Schneider et al. (1981). Therefore, the original data 
were corrected using equation (18). The kinematic 
correction A, as derived from the electron density and 
one-particle potential of Moruzzi et al. (1978), was 
applied to the data, being of the same order as the 
experimental errors. Since in Schneider et al. (1981) the 
experimental data were compared to the free atom 
neglecting the A contribution, in the present analysis 
the original data were scaled in order to fit the RHF 
free-atom scattering factor (International Tables for 
X-ray Crystallography, 1989) at sin(O)/k values greater 
than 0.5 A -a. A scaling factor very close to 1 was found, 
namely 1.0042 (62). The f0 data thus obtained are 
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Table 6. Copper." e x p e r i m e n t a l  scat ter ing  fac tors  p e r  a t o m  

Theoretical results are from Bagayoko et al. (1980) and the free-atom RHF calculation is from International Tables for X-ray Crystallography 
(1989). In the last column, values of the kinematic correction A are listed. The average ratio and fluctuation of the experimental data over the 
theoretical ones is reported. 

hkl sin(0)/), (~-1) ~xp ~h ~t A 

111 0.240 21.68 (14) 21.68 22.08 --0.06 
200 0.277 20.38 (13) 20.35 20.72 --0.07 
220 0.391 16.60 (12) 16.62 16.78 --0.08 
311 0.459 14.68 (11) 14.70 14.78 --0.08 
222 0.479 14.22 (11) 14.17 14.23 --0.08 
400 0.553 12.42 (10) 12.42 12.46 --0.08 
331 0.603 11.42 (9) 11.41 11.46 -0.09 
420 0.619 11.14 (10) 11.13 11.17 -0.09 
422 0.678 10.18 (10) 10.16 10.20 -0.09 
333 0.719 9.58 (9) 9.58 9.61 -0.09 
511 0.719 9.62 (9) 9.58 9.61 -0.09 
440 0.782 8.92 (11 ) 8.85 -0.09 
600 0.830 8.37 (11 ) 8.37 -0.09 
444 0.958 7.38 (12) 7.40 -0.09 
800 1.107 6.77 (16) 6.66 -0.09 
660 1.174 6.42 (15) 6.39 -0.09 
555 1.198 6.30 (15) 6.30 -0.09 
10,0,0 1.383 5.57 (17) 5.68 --0.09 
666 1.437 5.48 (19) 5.49 --0.09 
880 1.565 5.08 (20) 5.09 --0.09 

R+a 
1.0009+0.0017 

reported in Table 6, together  with the theoret ical  values 
from Bagayoko et al. (1980). It is apparent  that the 
exper imenta l  data, after subtract ion of A and scaling to 
the atomic scattering factor, are in very good agreement  
with the theoret ical  ones. In the past, several theoret ical  
and exper imenta l  investigations of the scattering 
factors in Cu have been carried out (see, for instance, 
Mackenzie  & Mathieson,  1992). However ,  in all cases 
the correction A was not applied since its importance 
was recognized only recently (Dewey et al., 1994). The 
most important  difference between the present  data 
reduction and the previous ones is the use of the A 
correction to define the scale factor more appropriately.  
This results in the good agreement  observed between 
theory and experiment ,  without  any further  adjustment.  

The Coulomb contr ibut ion to the cohesive energy, 
calculated using the data of Table 6 and including free- 
atom data up to sin(0)/~. -- 200,~-1,  is quoted in Table 
1. The exchange-correlat ion contr ibut ion could not be 
deduced in this case since an incoherent  scattering- 
factor measurement  is not available. However ,  the 
magni tude of this term is expected to be of the order  of 
a few e V a t o m  -1 (Mazzone & Sacchetti ,  1984). The 
cohesive energy value derived from the exper imental  
structure factors can be considered rather  satisfactory. 
Indeed,  a l though different from the thermochemical  
value, it amounts  to ~ 3  x 10 -4 of the total ground-state  
energy E0 of the system. Therefore,  the exper imental  
data repor ted in Table 6 can be reliably assumed as 
representat ive of the actual crystal values within about  
0.1r0. 

2.5. G e r m a n i u m  

The analysis of Ge data from Matsushi ta  & Kohra 
(1974), Cu Ko~ radiation, and Deutsch et al. (1990), W 
Kctl radiation,  together  with the high-accuracy data 
collected at 342 and 1381 keV incoming photon  energy 
(Dewey et al., 1994), is reported in Dewey et al. (1994), 
where the same data-reduct ion procedure as in §2 was 
applied. For a meaningful  internal  comparison of these 
sets of data, correction of the low-energy data for the 
anomalous  contr ibut ion f~E was necessary. The deter- 
minat ion of fiLE took advantage of the exper imental  
data measured  at 1381 keV and it was described in 
Dewey et al. (1994). However ,  at this high energy, the 
frad contr ibut ion could not be neglected and it was 
found to amount  to 0.0028f0, whereas it did not  affect 
the data at 8, 59 and 342 keV. This term was accounted 
for in deducing f't,E (Dewey et al., 1994). The kinematic  
correction A was calculated from the free-atom elec- 
tron density (Herman  & Skillman, 1963) and applied to 
all the exper imental  data. No high-accuracy neut ron  
diffraction data on the Debye-Wal l e r  factor in Ge are 
available. So it was deduced from the measured phonon  
dispersion relations (Neliu & Nilsson, 1972). As 
reported in Dewey et al. (1994), it was found to be 

e x p [ - W ( G ) ]  = exp{-0.560[sin(0)/~.]2}. (19) 

The best est imate of the scattering factors deduced in 
Dewey et al. (1994) as well as the theoret ical  results 
from Lu et al. (1995) and Wang & Klein (1982) are 
presented in Table 7. As in the case of Si, the overall 
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Table 7. Germanium: best estimate o f  the experimental scattering factors per atom, fife 
Theoretical results are also reported: (a) data from Lu et al. (1995); (b) data from Wang & Klein (1982). Free-atom values are from the RHF 
calculation of International Tables for X-ray Crystallography (1989). In the last column, values of the kinematic correction A are listed. Average 
ratios and fluctuations of the experimental data over the theoretical ones are reported. 

hkl sin(O)/X f~ ~h ~h f~' A 
( i - ' )  (a) (b) 

111 0.1531 27.450 (22) 27.519 27.46 27.381 -0.083 
220 0.2500 23.581 (35) 23.683 23.62 23.792 -0.092 
311 0.2931 22.181 (75) 22.172 22.13 22.360 -0.096 
400 0.3535 20.257 (70) 20.318 20.28 20.452 -0.101 
331 0.3852 19.606 (87) 19.432 19.37 19.488 -0.103 
422 0.4329 18.059 (71) 18.016 17.96 18.085 -0.106 
333 0.4592 17.345 (32) 17.275 17.22 17.338 -0.107 
440 0.5000 16.173 (32) 16.187 16.12 16.227 -0.110 
444 0.6123 13.528 (20) 13.493 13.509 -0.115 
660 0.7499 11.006 (55) 10.924 10.949 -0.119 
555 0.7653 10.669 (31) 10.684 10.704 -0.120 
777 1.0715 7.531 (35) 7.543 7.542 -0.121 

R-t-cr R-t-~r 
1.0010+0.0040 1.0034-t-0.0044 

agreement  between calculated and experimental  scat- 
tering factors is very satisfactory. Use of these data to 
calculate the cohesive energy, using the atomic data up 
to s i n ( 0 ) / ; ~ -  200,~ -1, yielded the value reported in 
Table 1. The agreement  with the thermochemical  value 
of the cohesive energy can be considered fairly satis- 
factory since for Ge, as in the case of Cu, the total 
ground-state energy E0 is very high. Therefore,  it is 
quite reasonable  to state that the data of Table 7 are 
representat ive of the Ge crystal scattering factors at 
least within 0.05r0. Finally, comparison with the free- 
a tom scattering factors (International Tables for X-ray 
Crystallography, 1989) in Table 7 shows that the rela- 
tivistic t rea tment  of the Ge atom is important  in order  
to describe the distr ibution of the more  tightly bound 
electrons. 

2.6. Transition metals 

In the case of transit ion metals, no extended high- 
precision measurements  are available. Nonetheless,  
medium-accuracy data are reported for some couples of 
reflections occurring at the same sin(0)/,k values. This is 
the case for V (Weiss & De Marco, 1965; Diana & 
Mazzone, 1975; Ohba  et al., 1981; Kretschmer & 
Schneider,  1984), Cr (Diana & Mazzone, 1972; Ohba  et 
al., 1982), Fe (De Marco & Weiss, 1965; Diana & 
Mazzone, 1974; Ohba  & Saito, 1982), Co (Diana & 
Mazzone, 1978) and Ni (Rocchi & Sacchetti, 1995). 
These data are particularly useful for modell ing the 
aspherical behaviour  of the electron density. In fact, in 
3d transit ion metals, the ratio between the structure 
factors of two reflections occurring at the same sin(0)/Z 
value can be well approximated using symmetry argu- 
ments (Weiss & Freeman,  1959): 

f0(G1) 1 + ZaA(G1)R(G1) 

where G1 and G2 are the reciprocal-lattice vectors 
of the two reflections, R(G) is a ratio between the 
spherical and aspherical form factors, A(G)  is a function 
of the direction of G and Za is an aspherical charge. 
R(G) can be obtained from free-atom data (Interna- 
tional Tables for X-ray Crystallography, 1989) with 
adequate  accuracy. Considering that  the ratio in equa- 
t ion (20) is always very close to 1, a very small error is 
int roduced using the free-atom data for R(G). A and 
f~E have little effect on the structure-factor ratio and 
can be safely neglected. Values of Za were deduced 
from both the experimental  data and the theoretical  
data (Laurent  et al., 1978, 1981; Callaway & Wang, 1977; 
Wang & Callaway, 1977), applying in the latter case the 
same analysis procedure.  Results are shown in Fig. 3, 
where a clear trend is apparent.  In fact, all b.c.c, metals 
exhibit a negative almost constant  Z~ value, while Ni, 
which is f.c.c., has a positive value of the aspherical 
charge and f.c.c. Co shows an intermediate  behaviour.  
This qualitative t rend is fairly well reproduced by the 
LDA calculations (Laurent  et al., 1978, 1981; Callaway 
& Wang, 1977; Wang & Callaway, 1977), a l though they 
fail in reproducing the experimental  data on a quanti- 
tative base: the absolute value o f  Z~ is systematically a 
factor o f  two smaller. 

3. Conclusions 

The analysis described in the previous sections allowed 
us to derive sets of experimental  scattering factors 
f0(G), i.e. the Fourier components  of the electron 
density, for Be, C, Si, Cu and Ge crystals with an 
accuracy adequate  for a meaningful  comparison 
between experiment  and state-of-the-art  calculations 
based on the LDA, apart  from the case of Be. A further  
useful comparison between theory and experiment  was 
carried out on the asphericity of the electron density in 
3d transit ion metals. fo(G2) - 1 + ZaA(G2)R(G2)' (20) 
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A first observation concerns the behaviour of the 
scattering factor of either Si or Ge in the high sin(0)/~. 
region. The experimental data here reported for these 
two elements can be definitely recognized as the most 
accurate absolute determinations available to date. The 
present analysis points out that the RHF calculation of 
the free-atom scattering factor reproduces very well the 
crystal data (0.1%) at high sin(0)/Jk. This finding makes 
us confident that use of the RHF scattering factors in 
the cases of Be, C and Cu was adequate. The present 
analysis confirms that the relativistic kinematic correc- 
tion A(G) cannot be neglected in analysing the photon 
scattering amplitudes as it provides a non-negligible 
contribution compared with the high accuracy of the 
experimental data. This statement is much more severe 
in the case of the heaviest elements we analysed, 
namely Cu and Ge, where the effect of A(G) even on 
the cohesive energy is appreciable. 

As to comparison with theory, the present analysis 
shows that the LDA calculations of the electron density 
reproduce fairly well the experimental data in C, Si, Cu 
and Ge, whereas failures concerning the size of the 
aspherical charge Za are observed in the case of tran- 
sition metals. Generally, the LDA provides fairly good 
values for the cohesive energy. However, in the 
framework of the LDA, the calculated cohesive energy 
depends mainly on the spherical average of the electron 
density over each atomic volume. Therefore, if the exact 
electron density is well represented by a superposition 
of nearly spherical electron distributions centred 
around the atomic sites, good results for both cohesive 
energy and electron density would be provided by the 
LDA calculation. This is actually the case for C, Si, Cu 
and Ge, where the electron-density decomposition is 

/ ~ . / / 
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V Cr Mn Fe Co Ni 

Fig. 3. Aspherical charge values along the 3d series. Experimental data 
from X-ray diffraction measurements (dots) in comparison with 
theoretical data (empty triangles) obtained by applying the same 
data analysis to the calculated scattering factors (see text). In the 
case of Co, the experimental data for f.c.c. Co (square) is from 
Fe8Co92 alloy and for b.c.c. Co (triangle) from the compound FeCo. 
Dashed lines are a guide to the eye. 

adequate because of the symmetry of p-like electrons in 
the Ta crystal field (C, Si and Ge) and the full 3d band 
in Cu. This conclusion can also be drawn looking at the 
small difference in the scattering factors of the reflec- 
tion pair 511-333, which produces an aspherical charge 
Za 5-10 times smaller than in transition metals. On the 
other hand, when the electron density exhibits a strong 
aspherical behaviour around each atomic site, as it does 
in 3d transition metals, one can expect larger 
disagreements between calculated and experimental 
electron density. The case of Be is different since a 
definite answer to the goodness of the theory-experi- 
ment comparison cannot be obtained from the available 
experimental data. Nonetheless, it deserves more 
experimental attention because an indication of core 
expansion is reported that could represent a strong test 
of first-principle calculations. Disagreements are 
systematically confined to those 3d systems, like V, Cr, 
Fe, Co and Ni, which exhibit an appreciable asphericity 
of the 3d electron distribution. A similar remark, 
although based on different considerations, was made 
by Gunnarsson & Jones (1985) and the same arguments 
were applied by Wang & Klein (1981) although on a 
reduced set of data. 

The interpretation arising from the whole compara- 
tive analysis could be that LDA failures are unlikely 
owing to an error in the exchange-correlation potential 
of the electron gas as employed in the most recent 
calculations, rather the error should be in the local 
approximation itself, that is the exchange-correlation 
potential should depend on the electron density in a 
region with size of the order of the inverse of the local 
Fermi momentum. A non-local dependence of the 
exchange-correlation potential on the electron density 
would result in a sort of smoothing of the potential 
itself. Therefore, one can guess that, for a given 
potential, the electron density generating it should be 
less smooth than that used in the standard local 
approximation. The inclusion of some degree of non- 
locality in the exchange-correlation potential is 
expected to increase the amount of asphericity of the 
electron density, thus improving the agreement with the 
experimental data in the case of transition metals. 
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